Quantum metabolism explains the allometric scaling of metabolic rates.
نویسندگان
چکیده
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
منابع مشابه
The origin of allometric scaling laws in biology.
The empirical rules relating metabolic rate and body size are described in terms of (i) a scaling exponent, which refers to the ratio of the fractional change in metabolic rate to a change in body size, (ii) a proportionality constant, which describes the rate of energy expenditure in an organism of unit mass. This article integrates the chemiosmotic theory of energy transduction with the metho...
متن کاملMulti-level regulation and metabolic scaling.
Metabolic control analysis has revealed that flux through pathways is the consequence of system properties, i.e. shared control by multiple steps, as well as the kinetic effects of various pathways and processes over each other. This implies that the allometric scaling of flux rates must be understood in terms of properties that pertain to the regulation of flux rates. In contrast, proponents o...
متن کاملThe predominance of quarter-power scaling in biology
1. Recent studies have resurrected the debate over the value for the allometric scaling exponent that relates whole-organism metabolic rate to body size. Is it 3 / 4 or 2 / 3 ? This question has been raised before and resolved in favour of 3 / 4 . Like previous ones, recent claims for a value of 2 / 3 are based almost entirely on basal metabolic rate (BMR) in mammals. 2. Here we compile and ana...
متن کاملAllometric scaling of metabolic rate from molecules and mitochondria to cells and mammals.
The fact that metabolic rate scales as the three-quarter power of body mass (M) in unicellular, as well as multicellular, organisms suggests that the same principles of biological design operate at multiple levels of organization. We use the framework of a general model of fractal-like distribution networks together with data on energy transformation in mammals to analyze and predict allometric...
متن کاملHigh-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms
Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 7 44 شماره
صفحات -
تاریخ انتشار 2010